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Abstract. A method to compute the curvature of the unstable manifold is introduced and 
applied to Henon map and Duffing attractor, showing that it allows us to locate the 
homoclinic tangencies and, in turn, to construct a generating panition. The probability 
distribution of curvature-values is investigated, showing a power-law decay. Finally, the 
shape of the multifractal spectrum of effective Liapunov exponents in non-hyperbolic 
systems is discussed. 

1. Introduction 

Knowledge of the evolution in the tangent space of a dynamical system allows one to 
characterize the chaotic properties of strange attractors in a quantitative way. Simple 
algorithms have been devised in the past years to compute the characteristic Liapunov 
exponents (Benettin el nl 1980, Shimada and Nagashima 1979), from which an almost 

In this paper we go one step further in the local analysis of stable and unstable 
manifolds, by determining not only the tangent (i.e. Liapunov) vectors, but also the 
curvature. Knowledge of this second-order indicator is very useful at least in two 
instances: accurate estimates of sections of a given strange attractor, and determination 
of homoclinic tangencies (HT). Moreover, we show that it is possible to extract accurate 
infnrmitinns nn the nnn-hyperho!ic phase of H h n - t y p e  maps, from thc ana!ysis of 
the tail of the probability distribution of curvature-values. In fact, by rephrasing the 
argument used below to explain the power-law decay of the probability density (section 
3),  we modify a previous conjecture raised in Grassberger el al (1988) on the shape 
of the multifractal spectrum of effective (finite-time) Liapunov exponents at small 
enough values. More precisely, we expect the straight-line behaviour to be substituted, 
below a critical value A,, by a nonlinear curve describing the non-hyperbolic phase 
(see section 4). 

According to Grassberger and Kantz (1985), the determination of HTS allows one 
to construct a generating partition for a typical non-hyperbolic attractor characterized 
by a stretch-and-fold dynamics. The main method which has been so far developed 
to detect Hrs requires t o  determine a periodic orbit belonging to the attractor and its 
eigenvectors. By then following the expanding direction in the nonlinear regime, one 
has to look forthose points such that infinitesimal distances along the unstable manifold 
are in fact contracted. Here, starting from the observation that, if a point lies on an 
HT, then the curvature around its forward iterates must diverge, we introduce an 
alternative procedure t o  detect HTS based on the determination of points with high 
curvature-values. 
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Thanks also to the introduction of PoincarC sections, much progress has been made 
in understanding the behaviour of 3D flows, with the possibility to generate a ZD image 
of the invariant measure. However, already the introduction of one extra dimension 
( 4 ~  flows, 3~ maps) almost ruins the usefulness of a Poincari section. In order to take 
a further section of the attractor (transversal to the unstable manifold), one is forced 
to compute a huge amount of data points discarding those lying too far from the 
chosen section, and the inaccuracy on the remaining points can be still non-negligible. 
An improvement can be obtained by correcting the coordinates of the points from the 
knowledge of the local direction of the unstable manifold (along which one can certainly 
find points of the attractor) (Kostelich and Yorke 1986, Badii and Politi 1986). It 
therefore becomes clear that knowledge of the curvature allows one to make better 
(second-order) extrapolation on the intersection of the invariant manifold with the 
chosen surface. While leaving the implementation of such an algorithm to future work, 
here we focus our attention on the more fundamental problem of determining HTS. 

It is important to notice that local curvature values do  depend on the coordinates 
and on the metric chosen to represent a given dynamics. Nevertheless, this is not a 
real drawback insofar as our main results deal with the case of diverging curvatures. 
In fact, homoclinic tangencies being strictly associated with infinite curvatures can be 
unambiguously identified, since any smooth change of coordinates can lead to a finite 
multiplicative correction only. 

Let us start by defining the machinery to compute the local curvature of a manifold. 
Given a curve r in the plane, we can locally parametrize it around a generic point 
( z , , z 2 )  as 

(1.1) 
12 

2 
x , ( t ) =  Z i + U i f  +p,-+o(f3) 

for i = 1 , 2 .  I f f  = (fi(x),f2(x)) (with a standard vector notation) is a transformation 
of the plane onto itself, by applying f to the curve r, we obtain a new curve r’ which 
can be parametrized in the same way 

(1.2) 
f’ 

x l ( t )  = z ; + u ; t + p ;  -+o(f3) 
2 

(for i = 1,2) .  In order to determine the relations linking the new with the old coefficients, 
it is sufficient to note that x ; ( t )  = J ( x ( t ) )  and then to expand x’ (1 )  in a Taylor series 
around f = 0, 

x l ( t ) =  z;+- u,r+ -&+- 
Jx, ” (:< Jx, axh 

where the summation over repeated indices is, as usual, neglected. By identifying the 
coefficients in (1.3) with those of (1.2) we find 

UJ (1.4) 

whose iteration describes the well known evolution in tangent space of the mapf, and 

ujuh 
Jh J’h p ;  =- p, 4. __ 
Jx, Jx, Jx, 
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giving the information about the curvature of the unstable manifold, provided that the 
vector U already converged to the right direction. In fact, we can recall that the curvature 
C of a curve r given in a parametric form is 

(1.6) 

where the dot indicates derivative with respect to the parameter t. Accordingly, from 
expression (1.1). 

As (1.7) is independent of the parametrization adopted, and being also convenient, 
during the numerical simulations, to keep the modulus of U constant, the expression 
of the curvature can be simplified by referring to a unitary vector, 

C=lP,U*-P,u2l. (1.8) 

2. Henon map: numerical results 

In this section we apply the machinery previously defined t o  the case of the H h o n  map 

x.+~ = 1 - ax'. + by, Y " + , = x " .  
The evolution in the tangent space is described by 

U"+, = -2ax,u, + bun U n t ,  = U" (2.2) 

P.+~ = -2ax.p" + bq, - 2aui % + I =  P. (2.3) 

while the second-order corrections evolve according to 

where the notations introduced in the previous section have been, for sake of simplicity, 
slightly modified. The results of a numerical simulation with the typical parameter 

L - 3  1 - - A  L-n.), "-- "L :.. f" I _..LA_^ .L- ..--L-L:,: .__.^ _1.... I vaiuc> (U 1.- auu u - - v . J )  a,= ~ I U W I L  LLL ngur: I ,  wiicil(i LILF pcuudurrr~y LU ucicu a 

Figure 1. Log-log plot of the probability of detecting a curvature value larger than c, 
versus C, for the Henon map with a = 1.4 and b = 0.3. 
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curvature-value larger than C is plotted in a log-log scale indicating a clear-cut 
power-law decay 
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at large C, with oi=O.57. The empirical relation (2.4) will be justified in the next 
section, where we also express a in terms of the characteristic Liapunov exponents. 

In figure 2 ( b ) ,  we show a sequence of expanding (continuous line) and contracting 
(dashed line) single-step multipliers, while in figure 2 ( a )  a few iterates of the curvature 
of the stable (dashed line) and unstable (continuous line) manifold are drawn. The 
two dashed curves have been obtained by inverting equations (2 .2)  and (2.3) and using 
the inverse of the same orbit computed forward in time, as a reference trajectory. It 
is clearly seen that, when the curvature of the unstable manifold is increasing up to a 
local maximum, the two multipliers do  coincide, indicating that the two invariant 
manifolds are nearly tangent. Moreover, we can also notice that before the curvature 
peak of the unstable manifold, a curvature peak of the stable manifold is observed as 
well, confirming that the concept of 'primary' HT, as the point where the sum of the 
curvatures of the two manifolds is minimum (along each sequence of tangencies), at 
least makes sense from a numerical point of view. We indeed recall that the suggested 
construction of a generating partition is based on the idea of connecting all primary 
tangencies by a dividing line. In this case we confirm that the minima, identified from 
all sequences yielding a large peak of the curvature, correspond to the points lying on 
the border of the partition, as from Grassberger and Kantz (1985). We return to this 
point in section 5 ,  when analysing the Duffing attractor. 

3 

2 

f' 
1 

. . . .. . _\  

0 10 20 30 LO " 
Figure 2. ( a )  Curvature of stable (broken curve) and umtable (full curve) manifold along 
an orbit passing close to  an HT: ( h )  forward (full) and backward (broken) single-step 
multipliers along the same orbit. 
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3. Probability distribution of curvatures 

Here, we justify (2.4) following two complementary approaches: a geometric one, 
starting from the knowledge of the structure of the Htnon attractor, and an analytic 
one, based on the recursive equation satisfied by the curvature. 

We start from the observation made in the last pan  of the previous section that 
large curvatures can only be detected in the vicinity of the iterates of primary HTS. 

Following the approach devised in Politi et a/ (1988), to characterize the non-hyperbolic 
phase of the Htnon attractor, we approximate the unstable manifold in the neighbour- 
hood of a primary tangency with the parabola 

y = x2. (3.1) 

The nth iterate of such a parabola is 
=e(B-3*o ln  2 

X” 

where we have assumed a contraction rate equal to e”“ along the x axis and an 
expansion 

The curvature of parabola (3.2) is maximum in correspondence of its vertex, where 
it is 

along the y direction (with B =log b). 

(3.3) 

where an irrelevant factor 2 has been omitted. To estimate the probability P ( C )  to 
find a curvature value larger than C, we first need to determine the minimum number 
of iterates n ( C )  necessary to have D, large enough. From (3.3) we obtain 

0, = e(B-3no)n 

log c 
n ( C ) = - .  

B -3ho (3.4) 

For n > n( C) there is an interval of width Sx, around the tangency, where the curvature 
remains larger than C. From relation (1.6) and equations (3.2) and (3.3) we can 
determine the curvature around a point distant Sx,, 

Y” - 0. 
(1 + y ” ) ” * - (  1 + D’,Sx’.)”/’ 

C =  (3.5) 

where the prime indicates the derivative with respect to x. By solving for Sx., we obtain 

The second addendum under the square root can be neglected, thus obtaining 

Sx. = (0’. C )-”’. (3.7) 

By mapping the nth iterate of the HT back to the primary tangency, the width Sx, is 
determined: 

(3.8) 

By further assuming that the Htnon attractor is essentially smooth along the unstable 
manifold (see also Politi er al 1988), and neglecting the dependence of ho on the HT, 
we have that the probability of detecting a curvature-value larger than C around an 

sx0= ~ - 1 / 3  e(*0-2B/3)n 
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nth order HT is of the same order as Sx,. Accordingly, the global probability P ( C )  is 
obtained by summing over all admissible n (i.e. larger than n ( C ) ) :  

(3.9) 

F Giovannini and A Politi 

p (  C )  ~ - l / 3  1 e[Ao-2B/31fi 

The coefficient (AO-2B/3) is less than 0 for the typical value of the negative Liapunov 
exponent, so that the scaling behaviour at large C-values is controlled by the smallest 
admissible n value. A simple substitution of (3.4) yields 

B - 2 A 0  
B-3Ao 

a e- (3.10) 

By considering A o =  -1.61 (i.e. the value of the negative Liapunov exponent), we obtain 
a = 0.556 which is in reasonable agreement with the result of direct simulations (-0.57). 
The discrepancy is probably to be ascribed to the fact we have neglected the fluctuations 
of A, associated with the multifractal structure of the hyperbolic phase of the H h o n  
attractor. 

Let us now pass to the second approach. From (1.7) and (2.3) we obtain the 
following recursive relation for the curvature: 

where the curvature is taken with sign, mncl denotes the single-step multiplier value, 
and U, is referred to a unitary vector. Being interested only in the statistics of large 
C-values, we can neglect the second term in the RHS of (3.11). It is only relevant in 
preventing C, from becoming exceedingly small. By further introducing S, = loglC,I, 
we find 

S,,, = (B-3An)+ S, (3.12) 

which describes a diffusive motion (with drift, as well) on a line with a reflecting 
barrier put at S = 0 simulating the effect of the term we have neglected. As most of 
the probability distribution of S is concentrated around S = 0, and from the definition 
of effective Liapunov exponent as the expansion rate over n time steps, we have 

(3.13) 

In other words the probability distribution of large S is the same as that of small A, 
apart from a rescaling of variables. Accordingly, (3.13), showing the equivalence 
between the evolution of effective Liapunov exponents and that of large curvatures, 
confirms the independence of the expected scaling law (2.4) on the choice of the 
coordinates. By recalling that 

p ( A ;  n)-e-S("'" (3.14) 

S,  = (B - 3h)n. 

we have, from (3.13), 

(3.15) 

Being interested in the negative A tail of the distribution, let us recall that, from 
Grassberger ef al (1988), 

s\ P ( A )  = K l - A  (3.16) 
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where K 2  is the generalized metric entropy K ,  of order 2. Upon substituting (3.16) in 
(3.15) we have 

P ( S ;  n)=exp[(B/3-K2)n-S/3].  (3.17) 

Since (8/3 - K 2 )  < 0, the scaling behaviour of the probability summed over all n values 
is obtained for n as small as possible. From (3.13) we can determine such n from the 
knowledge of S and of A,;. 

(3.18) 
S 

B -3A,,.. 
n, = 

Substitution in (3.17) yields 

(3.19) 

By Substituting Amin with the most probable value of the Liapunov exponent we obtain 
a result which is slightly smaller than the previous one obtained from (3.10) (a = 0.54). 
In this case, the crucial approximation behind the derivation of (3.19) is the choice 
of the proper A,!. value, a problem equivalent to determining the negative4 tail of 
g(A), which was solved in Grassberger et a/  (1988) by conjecturing (3.16). In the next 
section we return to this question by rephrasing the first approach here applied to 
determine the scaling behaviour of P ( C ) .  

4. Multifractality of the Liapunov spectrum 

Here, we discuss the validity of the conjecture raised in Grassberger et nl (1988) on 
the existence of a first-order phase transition in the spectrum of the first Liapunov 
exponent in Htnon-type maps. In fact, we show that the straight line behaviour of 
g(A) does not proceed down to the smallest value of the first Liapunov exponent. A 
new highly non-trivial non-hyperbolic phase is expected in the last part of the spectrum. 

In order to estimate the probability of finding a Liapunov exponent smaller than 
A we again refer to the nth iterate of a primary tangency. The multiplier is computed 
by determining the expansion (contraction) rate along the tangent to the unstable 
manifold. One straightforwardly obtains 

for a point at distance x from a primary tangency. As A > A. and (B - A,) > A, we can 
neglect the '1' and 4x2 terms above and below the sign of fraction, respectively. By 
further solving for x we obtain 

(4.2) 

The smoothness of the attractor along the unstable manifold suggests that the probabil- 
ity of finding an effective Liapunov exponent smaller than A (i.e. a point closer than 
x to a primary tangency) is of the same order as x itself times the probability of finding 
Ao.  In the following, rather than referring to Ao,  we prefer to introduce A + =  B-A. 
which we conjecture to be distributed as the positive Liapunov exponent in the 
hyperbolic phase. Accordingly, we find 

= e(*+*"-B!n 

(4.3) e(*-*+-*(*,!!n P(A ,  A+;  n) = 
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The value of P(A;  n) is finally obtained by taking the maximum over all possible A + .  
This is obtained for 

F Giouunnini and A Politi 

g’(Af) = -1 (4.4) 

A : + g ( A $ ) = K ,  (4.5) 

which, from the theory of multifractal sets, yields 

which confirms (3.16). However, we must notice that, for A sufficiently negative, A +  
cannot take the critical value A:. Indeed, we must recall that 

A + 2  B -  A. (4.6) 

This means that there is a critical value 

A,=B-A*, (4.7) 

below which (3.16) can no longer hold. In other words it appears very plausible that 
the straight-line behaviour of the Liapunov spectrum is confined between A c  and A T .  
For A < A c  the maximum over all possible A+-values is attained just for the smallest 
possible value of A + ,  which is obtained when the equality holds in (4.6). By substituting 
in (4.3), we obtain the expression 

g(A) = B -2A + g ( B  - A )  (4.8) 

which holds for ( B  - < A < A c ,  where the minimum A-value is obtained in 
correspondence of the largest A + .  A semi-quantitative picture of g(A) is presented in 
figure 3 with the three different phases: ( U )  the non-hyperbolic region, where the 
multifractality of homoclinic tangencies prevails; ( b )  a straight-line behaviour indicat- 
ing a first-order phase transition in the generalized Liapunov exponents; (c) the usual 
hyperbolic phase. 

Figure 3. Spenrum g(A) of the effective positive Liapunav exponent for the H h o n  map. 
The expected three different regimes are reported: hyperbolic phase above A S ;  non- 
hyperbolic phase below Ae; intermediate region characterized by a straight-line behaviour 
in between. 
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5. Generating partition of Duffing attractor 

In section 2 we have seen that the choice of points with high curvature values really 
allows us to pick up the H T ~ .  According to the conjecture raised in Grassberger and 
Kantz (19851, such points represent the ingredient necessary to build a generating 
partition. The main remaining problem is the choice of the correct point in any doubly 
infinite sequence of tangencies. It was conjectured that the relevant tangencies, called 
‘primary’, are those where the sum of the curvatures of stable and unstable manifold 
is minimum. In section 2 we have confirmed such an hypothesis for the H6non map 
with the usual parameter values. In this section we study a flow, namely the Duffing 
oscillator, 

(5.1) 

to further check the correctness of this conjecture and also to determine for the first 
time a non-trivial generating partition for a flow (in the Lorenz model, there is no 
folding and thus the problem does not appear at all; in some cases, the partition can 
be determined from symmetry considerations only (Shimada 1979, otherwise see Badii 
et al 1990)). 

The arguments used in the introduction to determine the evolution equations of 
the curvature in a recursive map need to be repharased for a flow. The main difference 
is the existence of an extra direction to be taken into account. However, fora periodically 
forced system like Duffing attractor, the extra component of the Liapunov vector is 
constant and thus irrelevant. It is straightforwardly seen that the same machinery 
applied to the RHS of map (2.1) has now to be referred to the RHS of flow (5.1). The 
equations for the evolution in the tangent space are 

l i = U  d = (1 -3x2)u - su (5.2) 

x = y  9 = -Sy + x - x3 + y cos ji 

and those for the second-order terms, 

P = q  g = (1 -3x’ )p - Sq -6xu2.  ( 5 . 3 )  

They have been numerically integrated for 6 = 0.25, f =  1 and y = 0.4 (values where a 
strange attractor is likely to exist, as from Guckenheimer and Holmes (1983). An image 
of a Poincart section, taken when the phase of the forcing term is a multiple of 257, 
is presented in figure 4. In practice, the symmetry of the attractor allowed us to cut 
the return time to the PoincarC section by a factor 2, by adding the points where the 
phase of the forcing term is any multiple of 57. In fact, from (5.1), it is immediately 
seen that, upon changing x and y in -x, -y, respectively, the flow equations remain 
unchanged, provided that the sign of the forcing term is changed as well. Therefore, 
formally speaking, the attractor shown in figure 4 can he interpreted as arising from 
an integration of equation (1) over half a period plus the inversion of the sign of its 
coordinates. 

The dots in figure 4 denote the HTS which pertain the definition of a generating 
partition. They have been determined by first looking for peaks of the curvature of 
the unstable manifold (in a very long trajectory), by further determining the closest 
minimum of the sum of curvatures occurring before the peak, plus a final ‘adjustment’ 
(see below). In figure 5 we present the results equivalent to those for the HCnon map 
shown in figure 2. Again, we can observe that whenever the curvature C ( t )  becomes 
very high, the forward and backward expansion rates are almost the same, indicating 
that stable and unstable manifolds are tangent to each other. The structure of the 
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Figure 4. PoincarC section of Duffing attractor and the three-symbol generating partition. 

J 
0 10 20 30 

t 
Figure 5. (a) Evolution of the cuwature of  stable and unstable manifold (broken and full 
curve, respectively) around an HT of  the Duffing attractor. ( b )  Evolution of positive and 
negative expanding rates (fuil and broken curve, respectively) along the same trajectory 
8s in ( a ) .  

attractor is clearly split into three parts from such tangencies so that we are led to 
iii:iodiici th:ic symbok (see figu:c 4). !n order !o check !h.! this is re'!!y a generating 
partition, we have computed the Kolmogorov-Sinai entropy K, and compared it with 
the Liapunov exponent. By interpreting each string of symbols as  the ternary expansion 
of a number between 0 and 1, we could then estimate K, by using a standard algorithm 
to compute the information dimension. More precisely, we have used the nearest- 
neighbour algorithm (Badii and Politi 1984), which was shown to be more effective in 
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Grassberger (1989) and Grassberger and Fahner (1987). (The presence in our case of 
three symbols makes the determination of block entropies more involved than usual.) 
The results are presented in figure 6 for two different orders of neighbours (namely 4 
and 20), showing a nice convergence to the Liapunov exponent A =0.1567. 

;: 

K ,  

0.15 

I 
! 2 3 " 5 

log N , 
Figure 6. Kolmogorov-Sinai entropy computed with a nearest-neighbour method versus 
the number of points. Full and broken curves refer to the 4th and 20th neighbours. The 
horizontal line refers to the Liapunov exponent A 0.1567. 

i e t  us aiso make a remark about the unusuaiiy high 'muitifractaiity' of this strange 
attractor. In comparison with the Kolmogorov-Sinai entropy K ,  = 0.157, the topological 
entropy KO is around 0.25! In fact, we have only found the following list of irreducible 
forbidden sequences: 02 and 22 of length 2, 2121 of length 4, 00000 and 20000 of 
length 5,000010,000011, 010000, 012000, 200010, and 212012 of length 6. We could 
not go to much longer blocks because of the exceedingly small probability of some 
sequences. By constructing a graph for his grammar and computing the topological 
entropy as the largest eigenvalue of its adjacency matrix (Crutchfield and Young 1989, 
Isola and Politi 1990), we obtain K,=0.266, but the convergence appears very slow 
and the second digit is already unreliable. 

We have good numerical evidence that the partition shown in figure 4 is indeed a 
generating one. Going back to the HTS which define it, it is no longer true (as for the 
H&zon ~ a p )  :hat each such taxgexcy co::espands !G the z i z i ~ ~ ~  of !he SCE of :he 
curvatures: in some cases it corresponds t o  the next or to the previous iterate. Therefore, 
we must conclude that the concept of 'primary' tangency remains vaguely defined. 
This is not surprising, by recalling that finite curvature values do depend on the choice 
of the coordinates, so that the point with minimal curvature may not be invariant 
under change of variables. 

sections 3 and 4 of the present paper; however, it makes the definition of generating 
partition not completely 'automatic'. For instance, in the case of Duffing attractor, we 
have been able to identify the relevant tangencies, by determining the largest compact 
subsets of tbe attractor (delimited by H T ~ )  whose image was not 'folded' on the attractor. 
Obviously this is a heuristic argument which calls for a necessary refinement. 

=.is is not I prob!em at a!! if one is in!eres!ed in determining sca!ing !%'US 1s I" 
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